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Modeling systems with large aspectModeling systems with large aspect
ratios is a difficult and important issueratios is a difficult and important issue

n Issue: Poisson solvers used in PIC codes often fail when grid
aspect ratio >> 1

n Relevance: Many important problems involve extreme aspect
ratios:

l Long beams in rf circular accelerators: length ~1m; radius ~1mm

l Flat beams (as at interaction point of lepton colliders)

l Beams in induction linacs: length~ 10s of meters; radius ~ cm

l Galaxies

n Standard grid-based approaches use very large # of grid points
in the long dimension, leading to prohibitively long run times

n As a result, it is extremely difficult or impossible to model high
aspect ratio systems accurately using standard grid-based
approaches, even on terascale computers



A potential A potential ““brick wallbrick wall”” in the road to large-scale space- in the road to large-scale space-
charge simulations of beams in circular machinescharge simulations of beams in circular machines

n mid-to-late1990s : parallel high current linac modeling codes
l Example: IMPACT code

l linac length ~km; ~1000s steps (Poisson solves); ellipsoidal bunches

n Early 2000s:
l Parallel weak-strong and strong-strong beam-beam simulations in colliders

l Major advances including first-ever million-particle, million-turn strong-strong
beam-beam simulation (J. Qiang)

n 2000+ : advance to modeling beams with space charge in circular machines
l Very long simulations: 1000’s to millions of turns

l More difficult Poisson problem if aspect ratio is large

l Keeping grid near-square would involve ~10-1000x more grid points

n (>1000s more steps) x (10-1000x more grid points)   fi
104 to >106 times more challenging than linac modeling

n Will not get this advance from hardware alone; also need
advances in algorithms



Poisson Problem:Poisson Problem:
ObservationObservation

n The Green function, G, and source density, r, may change
over vastly different scales

n In simple geometries G is known apriori; r is not

† 

f(x, y) = G(x - x ', y - y ')r(x ', y')dx 'dy 'Ú

We should use our full knowledge of G, as needed, to obtain
accurate, efficient, and robust solution of the Poisson problem

n Example: 2D Poisson equation in free space

† 

G(x - x ', y - y ') =
1
2

ln((x - x ')2 + (y - y ')2)



Standard ApproachStandard Approach
((Hockney Hockney and Eastwood)and Eastwood)

n approach makes use of only partial knowledge of G

n equivalent to trapezoidal rule to approximate the
convolution integral

n Cutoff at (x,y)=(0,0); isotropy issue for large aspect ratio
n error depends on how rapidly the integrand, rG, varies

over an elemental cell
l If r changes slowly we might try to use a large grid spacing; but this can

introduce huge errors due to the change in G over a cell length

† 

fi, j = Gi- i', j- j 'rÂ i', j'
† 

f(x, y) = G(x - x ', y - y ')r(x ',y')dx 'dy 'Ú
flflfl

† 

G0,0 = G0,1



Cellular Analytic  Convolution (CAC)Cellular Analytic  Convolution (CAC)

n Assume r varies in a prescribed way in each cell

n Use analytic Green function to perform the convolution
integral exactly in each cell, then sum over cells

n Example: linear basis functions to approximate r.

† 

f(xi, y j ) =
1

hxhy i', j '
Â ri, j dx '

0

hx

Ú dy '
0

hx

Ú (hx - x ')(hy - y')G(xi - xi' - x ',y j - y j ' - y ') +

1
hxhy i', j '

Â ri+1, j dx '
0

hx

Ú dy ' x '(hy - y ')
0

hx

Ú G(xi - xi' - x ',y j - y j ' - y ') +

1
hxhy i', j '

Â ri, j +1 dx '
0

hx

Ú dy '(hx - x')y '
0

hx

Ú G(xi - xi' - x ',y j - y j ' - y') +

1
hxhy i', j '

Â ri+1, j +1 dx '
0

hx

Ú dy '
0

hx

Ú x ' y 'G(xi - xi' - x ',y j - y j' - y ')

n Shifting the indices results in a single convolution*
involving an integrated effective Green function:

† 

fi, j = Gi- i', j- j '
eff

i', j '
Â ri', j'

* plus possible boundary corrections involving single (not double) sums

hx

hy



GGeffeff  consists of 4 terms: what are they?consists of 4 terms: what are they?

n 1st term: Indefinite integral is function of (xi-xi’,yj-yj’)=(a,b)
evaluated at  (a,b),  (a-hx,b),  (a,b-hy),  (a-hx,b-hy)



No interaction cutoff at short distancesNo interaction cutoff at short distances

n Formulas looks like they have singularities, but result must be finite

n In general, limiting form is needed in 4 cases:
l (xi-xi’Æ0, yj-yj’ Æ0),(xi-xi’Æhx, yj-yj’ Æ0),(xi-xi’Æ0, yj-yj’ Æhy),(xi-xi’Æhx, yj-yj’ Æhy)

n Example: (xi-xi’Æhx, yj-yj’ Æhy)



Cost and Accuracy;Cost and Accuracy;
Improvement over Improvement over Hockney Hockney ApproachApproach

n Cost: Computing the elemental integrals can be done via
analytical formulae or by numerial quadrature

l Requires more FLOPS than simply using Gij but…

l when the grid is fixed, needs to be done once at the start of a run.
Amortized over many time steps, does not significantly impact run time.

l Note well: sensitivity to roundoff for large aspect ratios. Care required!

n Accuracy: Method works well as long as the elemental integrals
are computed accurately and as long as the grid and # of
macroparticles are sufficient to resolve variation in r

l maintains accuracy even for extreme aspect ratios (>1000:1)

As a result, new method performs orders of magnitude better
than the standard convolution algorithm for realistic problems
involving large aspect ratios



Example: Uniformly filled 2D ellipseExample: Uniformly filled 2D ellipse

n Aspect ratio is 1:1000
l   xmax=0.001, ymax=1

n Calculation of fields using (1) standard Hockney algorithm
and (2) new approach

l In both cases, performed convolutions for the fields directly (rather than
calculating the potential and using finite differences to obtain fields)

n Calculation performed on a grid of size ±0.0015 x ± 1.5
using a mesh of size

l Hockney: 64x64, 64x128, 64x256,…, 64x16384

l New approach: 64x64



1:1000 test case; Ex vs. x:1:1000 test case; Ex vs. x:
Standard Standard Hockney Hockney Algorithm has huge errorsAlgorithm has huge errors

64x64

64x128

64x512
64x256

exact



Ex vs. x : Reduced Vertical ScaleEx vs. x : Reduced Vertical Scale

64x64
64x128

64x512
64x256

64x1024
64x2048

64x4096
64x8192 exact



Old algorithm has large errors until grid size reaches ~ Old algorithm has large errors until grid size reaches ~ 64x819264x8192..
New algorithm has excellent accuracy on a grid as small as New algorithm has excellent accuracy on a grid as small as 64x6464x64

64x1024

64x2048

64x4096
64x8192
64x16384

New
algorithm
64x64



Comparisons with other methodsComparisons with other methods

n Comparison with the finite element method:
l New method uses basis functions, but there is no variational quantity

to be numerically minimized and no linear system to be solved
ß This is done analytically

n Comparison with the finite difference method:
l FD approximates: (1) continuous operators by stencils on grids, and

(2) sources by values at grid points
ß Error in (1) depends on behavior of the solution, f, compared with the FD

approximation to —2

l Error in new approach is source-limited, i.e. it only depends on the
deviation of the source, r, from the assumed functional form
ß No issue with anisotropy except indirectly through the representation of r



Comment on Direct Convolution MethodsComment on Direct Convolution Methods

n Would not be generally useful except for the key fact that
a discrete convolution can be turned into a cyclic
convolution through zero padding and periodization of G

l Turns N2 method into N log N at the price of grid doubling*

l Works when G=G(x-x’)

l Also works when G=G(x+x’)



Future DirectionsFuture Directions

n Extension to 3D straightforward but messy
l Formulas have been generated using a symbolic math program

l Implementation underway

n Question: Can this general approach (i.e. using full analytical
knowledge of G) be used in other simple geometries?

l Can do Dirichlet in a box (write G as sum of convolutions/correlations)

l Long beams in pipes:
ß Analytic approach to integratioin is crucial since G and r may vary on vastly different

scales
ß potential performance increase by making use of shielding (exponential falloff) in the

long direction to discard terms beyond a certain distance from the source

z

r

G



Extension to Beams in PipesExtension to Beams in Pipes

n CAC provides a crucial advantage, since the Green function falls off
exponentially in z, though r(z)may change slowly over meters

n Due to shielding, sum can be truncated in the “long” direction:

† 

fi, j =
i'=1

Nx

Â Gi- i', j- j '
eff ri', j '

j '= j

j ± jcutoff

Â
n For long beam in a conducting pipe, if grid length in z is >> pipe radius,

can truncate at nearest neighbors:

† 

fi, j = (Gi- i', j-1
eff ri', j-1

i'=1

Nx

Â + Gi- i', j
eff ri', j + Gi- i', j +1

eff ri', j +1)

n For a rectangular pipe, can rewrite Green function as a sum of
convolutions and correlations; then can still use FFT-based approach
to sum over elements


